It is truly amazing when you think about all the science concepts people interact with on a daily basis and don’t even think about. Various laws of motion, biology of life forms, chemical reactions, and physical changes. All of these are hiding in plain sight in your life: how when you stomp on your breaks, your body still goes forward, until (hopefully) the seatbelt catches you; bacteria growth on food you accidentally left out; filling an ice tray with water and having it freeze. All fairly mundane activities that, when looked at scientifically, clearly show amazing processes going on. For example, on any given day, you aren’t thinking about atomization, yet you probably actively cause it in your day-to-day existence.

Atomization is the application of force in some way to break a liquid down into fine particles. You are taking something that is a liquid and applying force in such a way as to make it freeform droplets, or a gas, or a mist, depending on the process and the liquid you start with. You might be familiar with the term “powder coated” when referring to metal. The powder coating is created through atomization. And, as I said before, you atomize things on a regular basis and might not have known that it had a name, nevermind that it was a scientific process. Perfume and anything you get out of an aerosol can come to mind. There’s even something you may have lying around in your garage that makes a good demonstration of atomization: a paint sprayer. By separating the paint into tiny droplets forced out of the nozzle of a paint gun, you can accomplish more than by using a brush—because a paintbrush keeps all the “atoms” together while the spray gun separates for both better control and covers a more widespread area while using less liquid. Paint from a brush can drip, run, and basically get everywhere. If you spend some time to read paint sprayer reviews, you’ll find that they’ll discuss the process of atomization and how small or large the droplets from the spray gun are. A paint gun gives you better accuracy (most have settings to control how much paint is being released at a time; no person could be that precise with a brush and a can of paint), and more speed to paint a given area more thoroughly and quickly.

Paint is interesting because it is typically more viscous than other liquids, so the droplets can be more obvious. Depending on the color, it can be easier to see when atomized than, say, perfume. And you can usually see the paint in a paint sprayer, unlike most aerosol cans, which tend to be solid in color and obscure the contents. The process is fairly simple: you fill a canister with the paint and attach it securely to the sprayer. A motor inside the sprayer creates suction to pull the paint up a tube and into the sprayer; if it is gravity fed, you attach it upside-down and let gravity’s force do the work. Then the paint passes through an atomizer valve, which breaks up the paint and creates a mist, which comes out the spray nozzle.

That’s all for now. Keep your eye out for other examples of atomization and of science at work!